Abstract

How to transfer industrial exhaust gases of nitrogen oxides into high-values product is significantly important and challenging. Herein, we demonstrate an innovative method for artificial synthesis of essential α-amino acids from nitric oxide (NO) by reacting with α-keto acids through electrocatalytic process with atomically dispersed Fe supported on N-doped carbon matrix (AD-Fe/NC) as the catalyst. A yield of valine with 32.1 μmol mgcat -1 is delivered at -0.6 V vs. reversible hydrogen electrode, corresponding a selectivity of 11.3 %. In situ X-ray absorption fine structure and synchrotron radiation infrared spectroscopy analyses show that NO as nitrogen source converted to hydroxylamine that promptly nucleophilic attacked on the electrophilic carbon center of α-keto acid to form oxime and subsequent reductive hydrogenation occurred on the way to amino acid. Over 6 kinds of α-amino acids have been successfully synthesized and gaseous nitrogen source can be also replaced by liquid nitrogen source (NO3 - ). Our findings not only provide a creative method for converting nitrogen oxides into high-valued products, which is of epoch-making significance towards artificial synthesis of amino acids, but also benefit in deploying near-zero-emission technologies for global environmental and economic development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.