Abstract

Photothermal therapy (PTT) is among the popular approach for treating solid tumours. The rapid killing of cancer cells under the influence of infrared radiation by a rapid increase in the temperature of the remote area now demands external agents with high photothermal transduction efficiency (PTE). Despite their improved PTE, black nanomaterials such as black phosphorus and titanium oxide are unable to meet the challenges in the physiological conditions. To address this major concern, we have developed black tin oxide (bSnO) with enhanced capabilities to respond in the physiological milieu. To make the synthesis cost-effective and eco-friendly, we have used electrochemical oxidation at 5 V and 100 mA to achieve ∼15 nm nanoparticle of bSnO. The as-synthesized bSnO exhibited high NIR absorption as well as high photothermal transduction efficiency. To circumvent the low aqueous solubility and photostability, bSnO was functionalized with polyethyleneimine (PEI). Upon exposure to 808 nm laser for ∼8-10 min, the temperature of the bSnO@PEI solution reached ∼58.5 °C. PTE of bSnO@PEI was calculated to be 51.2%. Owing to its high biological compatibility, tin offers relatively better stability when exposed to cancer cells in vitro and in vivo. In comparison to other black nanomaterials, bSnO@PEI was found to exhibit better response under NIR irradiance for non-invasive photothermal therapy of cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call