Abstract

Multiwalled carbon nanotubes (MWCNTs) were functionalized with acid treatment and thereafter gold–copper nanoparticles were electrodeposited on the MWCNTs by applying several repetitive scans, thus forming a Cu–Au–MWCNT/GCE interface. The electrochemical reduction of oxygen was studied on this modified electrode in 0.1 M NaOH solution. The electrocatalytic activity on the Cu–Au–MWCNT/GCE showed a tendency towards the O 2 reduction. The peak potential of O 2 reduction on the Cu–Au–MWCNT/GCE shifted ca. 70 mV higher positive potentials as compared to that of a polished glassy carbon electrode. A significant current enhancement was obtained on the Cu–Au–MWCNT/GCE compared to that of bare GCE, MWCNT/GCE, Cu–MWCNT/GCE and Au–MWCNT/GCE. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed in order to investigate the surface morphology and elemental composition of the modified electrode, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.