Abstract

Oxygen reduction at the polarized water/1,2‐dichloroethane (DCE) interface catalyzed by a Cu (II) coordination polymer (Cu–pol) was studied with two lipophilic electron donors ferrocene (Fc) and tetrathiafulvalene (TTF). The results of the ion transfer voltammetry and two‐phase shake flask experiments suggest proceeding of the catalytic reaction as proton‐coupled electron transfer reduction of oxygen to hydrogen peroxide and water. In this process, while the protons supplied from the aqueous phase, the electrons provided from the organic phase by the weak electron donor, Fc. The O2 molecule takes a superoxide structure with Cu–pol which resulted to hydrogen peroxide or water on reduction. Furthermore, the results revealed that the apparent rate constant of TTF + Cu‐pol is higher than that of Fc + Cu‐pol system due to the faster kinetic reaction of TTF with respect to Fc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.