Abstract

The synthesis, structural characterization, and reactivity of an iron(III) chloride compound of 6,6'-di(3,5-di-tert-butyl-2-hydroxybenzene)-2,2'-bipyridine (Fe(tbudhbpy)Cl), under electrochemically reducing conditions is reported. In the presence of carbon dioxide (CO2) under anhydrous conditions in N,N-dimethylformamide (DMF), this complex mediates the 2e- reductive disproportionation of two equivalents of CO2 to carbon monoxide (CO) and carbonate (CO32-). Upon addition of phenol (PhOH) as a proton source under CO2 saturation, catalytic current is observed; product analysis from controlled potential electrolysis experiments shows the majority product is formate (68 ± 4% Faradaic efficiency), with H2 as a minor product (30 ± 10% Faradaic efficiency) and minimal CO (1.1 ± 0.3% Faradaic efficiency). On the basis of data obtained from cyclic voltammetry and infrared spectroelectrochemistry (IR-SEC), the release of CO from intermediate Fe carbonyl species is extremely slow and undergoes competitive degradation, limiting the activity and lifetime of this catalyst. Mechanistic studies also indicate the phenolate moieties coordinated to Fe are sensitive to protonation in the reduced state, suggesting the possibility of cooperative pendent proton interactions being involved in CO2 reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.