Abstract

Porous Ni-Co-(WC)x ternary composite electrodes were fabricated by means of electrodeposition on a foam Ni substrate. The surface morphology and microstructure of the electrodes were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrocatalytic properties of porous Ni-Co-(WC)x electrodes for hydrogen evolution reaction (HER) in 0.5 M H2SO4 solution at temperatures from 25 to 50 °C were conducted by means of cathodic polarization, electrochemical impedance spectroscopy (EIS), cyclic voltammetry and chronoamperometry (CA). These Ni-Co-WC electrodes are efficient electrocatalysts for HER. Compared with the porous Ni-Co electrode, the porous Ni-Co-(WC)x electrode exhibited a lower HER overpotential, a lower electrochemical impedance, a lower apparent activation energy and a higher exchange current density. The apparent exchange current density of porous Ni-Co-(WC)x (x = 10, 20, 30 and 40 g/l) is 2.01, 3.01, 7.8 and 19.91 times of porous Ni-Co electrode, respectively. With the increase of WC concentration and temperature, the apparent exchange current density of HER was enhanced. With the increase of WC concentration and potential, the HER resistance and the activation energy decreased. The Ni-Co-(WC)x electrode exhibited superior corrosion resistance and stability for HER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.