Abstract

Electrochemical and electrocatalytic properties of thin films Au(111-25 nm), which are quasi-single-crystal electrodes 25 nm thick made of gold with the (111) preferential orientation, and same electrodes modified with a monolayer (ML) of palladium are studied in 0.1 M solutions of HClO4 and H2SO4 employing voltammetric techniques and surface enhanced infrared reflection absorption spectroscopy (ATR-SEIRAS). Spectroscopic experiments demonstrate strong adsorption of electrolyte species (H2O, OHads, anions) on the Pd surface. The weak and reversible adsorption of CO on Au(111-25 nm) does not change the interfacial-water structure. Adsorption of CO on the Pd-modified film results in an irreversibly adsorbed CO adlayer stabilized by co-adsorbed isolated water species. Various electrooxidation mechanisms are discussed. Electrochemical and spectroscopic investigations on the adsorption and electrooxidation of HCOOH on bare and 1 ML Pd-Au(111-25 nm) electrodes reveal that electrooxidation proceeds in both cases via a direct or dehydrogenation pathway. This mechanism involves the formation of formate as intermediate, which is detected by in situ ATR-SEIRAS. The reactivity on Pd-modified surfaces is higher than on bare gold. The specifically adsorbed anions (sulfate/bisulfate) and the oxide formation on the substrate surface lower the reactivity for CO and HCOOH on both surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.