Abstract

The low efficiency of the electrocatalytic oxidation of water to O2 (oxygen evolution reaction‐OER) is considered as one of the major roadblocks for the storage of electricity from renewable sources in form of molecular fuels like H2 or hydrocarbons. Especially in acidic environments, compatible with the powerful proton exchange membrane (PEM), an earth‐abundant OER catalyst that combines high activity and high stability is still unknown. Current PEM‐compatible OER catalysts still rely mostly on Ir and/or Ru as active components, which are both very scarce elements of the platinum group. Hence, the Ir and/or Ru amount in OER catalysts has to be strictly minimized. Unfortunately, the OER mechanism, which is the most powerful tool for OER catalyst optimization, still remains unclear. In this review, we first summarize the current state of our understanding of the OER mechanism on PEM‐compatible heterogeneous electrocatalysts, before we compare and contrast that to the OER mechanism on homogenous catalysts. Thereafter, an overview over monometallic OER catalysts is provided to obtain insights into structure‐function relations followed by a review of current material optimization concepts and support materials. Moreover, missing links required to complete the mechanistic picture as well as the most promising material optimization concepts are pointed out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call