Abstract

The morphology, crystallinity, and chemical state of well-defined Ir oxide nanoscale thin-film catalysts prepared on Ti substrates at various calcination temperatures were investigated. Special emphasis was placed on the calcination temperature-dependent interaction between Ir oxide film and Ti substrate and its impact on the electrocatalytic oxygen evolution reaction (OER) activity. The Ir oxide films were characterized by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and cyclic voltammetry. Furthermore, temperature programmed reduction was applied to study the Ir oxide species formed as a function of calcination temperature and its interaction with the Ti substrate. A previously unachieved correlation between the electrocatalytic OER activity and the nature and structural properties of the Ir oxide film was established. We find that the crystalline high temperature Ir oxide species is detrimental, whereas low temperature amorphous Ir oxy-hydroxides are highly active and efficient catalysts for the OER. Moreover, at the highest applied calcination temperature (550°C), Ti oxides, originating from the substrate, strongly affect chemical state and electrocatalytic OER activity of the Ir oxide film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call