Abstract

The methanol oxidation on C/NiZn-Ru electrode in a 1.00M KOH and 1.00M KOH+1.00M methanol solutions at different scan rates and temperatures was studied by the cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) techniques. The graphite electrode is coated in a nickel–zinc bath by electrodeposition for use as anode materials for methanol oxidation in alkaline solutions. It is etched in a concentrated alkaline solution to produce a porous and electrocatalytic surface suitable for use in the methanol oxidation (C/NiZn). Ruthenium was electrodeposited on a C/NiZn electrode. The surface morphologies and compositions of electrodes were determined by energy dispersive X-ray (EDX) and scanning electron microscopy (SEM). Kinetic parameters of oxidation such as the anodic electron transfer coefficient (αa), cathodic electron transfer coefficient (αc), charge transfer rate constant (ks) and activation energy values were calculated. The effect of methanol concentration on methanol oxidation were also investigated. It was found that the ruthenium electrodeposited electrode showed higher catalytic activity and stability toward methanol oxidation than the C/NiZn electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.