Abstract

Hydrazine is often used to reduce graphene oxide (GO) to produce graphene. Recent observations suggested that when hydrazine is used to reduce GO, the resulting reduced graphene actually contains certain amounts of nitrogen dopants, which may influence the properties of the obtained material, and in some cases may be deployed for beneficial advantage. In this work, we prepared graphene oxide by the chemical oxidation method, then used either hydrazine or sodium borohydride (as a control) to reduce the graphene oxide to graphene and to explore the nature of the nitrogen functionalities introduced by hydrazine reduction. Pt nanoparticles were then deposited on the nitrogen doped (hydrazine-reduced) and undoped (control) graphene substrates, and the morphology, structure, and electrocatalytic methanol oxidation activity were characterized and evaluated. The results show that the nitrogen functional groups introduced into the graphene by hydrazine reduction greatly improve the electrocatalytic activity of the underlying Pt nanoparticles towards the methanol oxidation reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call