Abstract
AbstractIn this work, the nanosheet‐assembled lindgrenite microflowers (chemical formula: Cu3Mo2O9) were synthesised through a simple process and low‐cost raw materials at room temperature in aqueous solution without using any surface‐active agent. The tightly interlaced nanosheets, like petals, can increase the specific surface area, which can bring about higher electrocatalytic activity and electroanalysis sensitivity. Thus, lindgrenite microflowers were prepared as an electrochemical sensor and successfully applied in the detection of paracetamol through the modified glass carbon electrode. Furthermore, this electrochemical reaction process was simulated at the ab‐initio level to reveal the catalytic mechanism, and the simulation results agreed well with electrochemical experiments. The electrochemical performance of the lindgrenite microflowers modified glassy carbon electrode (GCE) was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The linearity of paracetamol ranged from 0.05 to 1200 μM (IT method) and 0.05 to 1000 μM (DPV method), low detection limit (0.01 μM) and high sensitivity (5.11 mA mM−1 cm−2) towards paracetamol. Moreover, this sensor was applied to detect paracetamol in human blood serum samples. The excellent results demonstrated that the prepared electrode not only showed a desirable linear range towards paracetamol but also exhibited practical applicability and reliability towards human serum samples detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.