Abstract

The electrocatalytic oxidation of two orally administered iron chelator drugs (deferiprone, CP20, and deferasirox, ICL670) was investigated on a nickel oxyhydroxide-modified nickel electrode in alkaline solution. The oxidation process involved and its kinetics were investigated using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques, as well as steady-state polarization measurements. Voltammetric studies indicated that in the presence of the drugs under study, the anodic peak current of low-valence nickel species increased, followed by a decrease in the corresponding cathodic current. This result indicates that the drugs were oxidized via oxyhydroxide species immobilized on the electrode surface via an EC′ mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by the drugs in question was also investigated. The corresponding rate law under the control of charge transfer was developed, and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of the drugs and the electron-transfer coefficients are reported. A sensitive, simple, and time-saving amperometric procedure was developed for the analysis of deferasirox and deferiprone, with detection limits of 28 and 19 μM, respectively. The electrode was used for the direct assay of deferasirox and deferiprone tablets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.