Abstract

Energy shortage and environmental pollution have become the most serious problems faced by human beings in the 21st century. Looking for advanced clean energy technology to achieve sustainable development of the ecological environment has become a hot spot for researchers. Nitrogen-based substances represented by urea are environmental pollutants but ideal energy substances. The efficiency of urea-based energy conversion technology mainly depends on the choice of catalyst. The development of new catalysts for urea oxidation reaction (UOR) has important application value in the field of waste energy conversion and pollution remediation based on UOR. In this work, four metal–organic framework materials (MOFs) were synthesized using ultrasound (NiCo-UMOFs) and hydrothermal (NiCo-MOFs, Ni-MOFs and Co-MOFs) methods to testify the activity toward UOR. Materials prepared using the hydrothermal method mostly form large and unevenly stacked block structures, while material prepared using ultrasound forms a layer-by-layer two-dimensional and thinner structure. Electrochemical characterization shows NiCo-UMOFs has the best electrocatalytic performance with an onset potential of 0.32 V (vs. Ag/AgCl), a Tafel slope of 51 mV dec−1, and a current density of 13 mA cm−2 at 0.5 V in a 1 M KOH electrolyte with 0.7 M urea. A prolonged urea electrolysis test demonstrates that 45.4% of urea is removed after 24 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call