Abstract
Direct electrochemical formation of hydrogen peroxide (H2O2) from pure O2 and H2 on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and is therefore of great interest from an academic and industrial point of view. Very recently, novel metal-free mesoporous nitrogen-doped carbon catalysts have attracted large attention due to the unique reactivity and selectivity for the electrochemical hydrogen peroxide formation [1–3]. In this work, we provide deeper insights into the electrocatalytic activity, selectivity and durability of novel metal-free mesoporous nitrogen-doped carbon catalyst for the peroxide formation with a particular emphasis on the influence of experimental reaction parameters such as pH value and electrode potential for three different electrolytes. We used two independent approaches for the investigation of electrochemical hydrogen peroxide formation, namely rotating ring-disk electrode (RRDE) technique and photometric UV–VIS technique. Our electrochemical and photometric results clearly revealed a considerable peroxide formation activity as well as high catalyst durability for the metal-free nitrogen-doped carbon catalyst material in both acidic as well as neutral medium at the same electrode potential under ambient temperature and pressure. In addition, the obtained electrochemical reactivity and selectivity indicate that the mechanisms for the electrochemical formation and decomposition of peroxide are strongly dependent on the pH value and electrode potential.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.