Abstract

Two cobalt complexes [Co(L1)2](ClO4)2⋅4CH3CN (1) and [Co(L2)2](ClO4)2⋅2CH3CN⋅0.5H2O (2) of the new click-derived bistriazolylpyridines 2,6-bis(1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)isonicotinate methyl ester (L1) and 2,6-bis-(1-methoxycarbonylmethyl-1H-1,2,3-triazol-4-yl)isonicotinate methyl ester (L2) were synthesized and characterized. The electrocatalytic hydrogen evolution reaction (HER) mediated by complexes 1 and 2 was studied in CH3CN in the presence of acetic acid. Both complexes catalyzed HER with low overpotentials and high Faradaic efficiencies (370 mV and 93% for 1, 300 mV and 95% for 2). The distal substituents on the triazolyl moiety of the bistriazolylpyridines have apparent impacts on the redox and catalytic properties of 1 and 2. The catalytic behaviors were further studied using spectroelectrochemistry and the reductant cobaltocene. It was found that the reduction of the bistriazolylpyridines was necessary for the catalytic activity. Plausible pathways were proposed for the HER mediated by 1 and 2. This work provided some hints for the preparation of HER catalysts based on the redox-active triazolylpyridine ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.