Abstract

We developed and optimized an electrocatalytic filtration system to catalytically hydrodechlorinate chlorophenolic compounds. A key part of the system was the cathode, which consisted of a filter constructed with electroactive carbon nanotubes (CNTs) functionalized with atomically precise gold nanoclusters (AuNCs). In the functional membrane electrode, the AuNCs attached to the CNTs functioned as a highly effective hydrodechlorination catalyst. Additionally, the ligands of the AuNCs facilitated the binding of the AuNCs with the CNT and protected the Au core from agglomeration. Atomic H* was the primary reactive species in the system, but direct reduction by cathode electrons also contributed to the elimination of 2,4-dichlorophenol (2,4-DCP) by hydrodechlorination. The generated atomic H* was able to break the C–Cl bond to achieve the rapid hydrodechlorination of 2,4-DCP into phenol, with 91.5% 2,4-DCP removal within 120 min. The AuNC catalysts attached to the CNT exceeded the best catalytic activity of larger nanoparticles (e.g., AuNPs), while the flow-through construction performed better than a standard batch reactor due to the convection-enhanced mass transport. The study provides an environmentally friendly strategy for the elimination of pervasive halogenated organic contaminants using a highly efficient, stable and recyclable system for hydrodechlorination that integrates nanofiltration and electrochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.