Abstract
Epidemics are threatening public health and social development. Emerging as a green disinfectant, H2O2 can prevent the breakout of epidemics in migration. Electrochemical H2O2 production powered by renewable electricity provides a clean and decentralized solution for on-site disinfection. This review firstly discussed the efficacy of H2O2 in disinfection. Then necessary fundamental principles are summarized to gain insight into electrochemical H2O2 production. The focus is on exploring pathways to realize a highly efficient H2O2 production. Progress in advanced electrocatalysts, typically single-atom catalysts for the two-electron oxygen reduction reaction (2e− ORR), are highlighted to provide high H2O2 selectivity design strategies. Finally, a rational design of electrode and electrolytic cells is outlined to realize the on-site disinfection. Overall, this critical review contributes to exploiting the potentials and constraints of electrochemical H2O2 generation in disinfection and pinpoints future research directions required for implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chinese Journal of Catalysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.