Abstract

In this work, GAC@Ni/Fe particle electrodes were prepared and employed for the degradation of sulfamethylthiadiazole (SMT) by three-dimensional electrocatalytic technology. The effects of particle electrode bi-metal loading ratio, cell voltage, particle electrode dosage, electrode plate spacing, and SMT initial concentration on SMT removal were studied. In addition, GAC@Ni/Fe particle electrode was analyzed by the scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS), and Fourier transform infrared spectrometer (FTIR) to characterize which indicated that a significant amount of iron-nickel oxide was formed on the surface of GAC@Ni/Fe particle electrode. The results indicated that when the nickel-iron loading ratio is 1:1, the SMT removal effect is the best, and the removal rate can reach 90.89% within 30min. Compared with the granular activated carbon without bimetal, the removal efficiency is increased by 37.58%. The degradation of SMT in the GAC@Ni/Fe particle three-dimensional electrode reactor is the joint result of both direct oxidation and indirect oxidation. The contribution rates of direct oxidation of anode and particle electrode and indirect oxidation of ·OH in the degradation are 32%, 27%, and 41%, respectively. Based on the intermediate detected by ultra-high liquid chromatography and the calculation of bond energy of SMT molecule by Gauss software, the degradation pathway of SMT in the GAC@Ni/Fe three-dimensional electrode reactor is proposed. This research provides a green, healthy, and effective method for removing sulfonamide micro-polluted wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.