Abstract

ABSTRACT The present paper focuses on a hybrid system combining electrochemical oxidation (EO) and activated carbon (AC) adsorption in a concept known as three-dimensional (3D) electrocatalytic technology for the treatment of oxytetracycline from aqueous solution; the conventional one-factor-at-a-time variation approach (AC dosage, OTC concentration, and current density) was used for determining the effects of operating parameters on the 3D electrochemical process and optimized via fuzzy logic modeling. The process’s superior performance was assessed based on comparative studies of the degradation efficiency of the 3D electrochemical process with AC adsorption and conventional 2D electrochemical process. The study showed that the AC particle electrode enhanced the performance of the 3D system by up to 21% in terms of OTC degradation efficiency compared to both adsorption and the conventional two-dimensional (2D) electrochemical system. When 2D and 3D processes were compared in required energy and electricity budgets, 3D electrode process with 0.75 g/L activated carbon requires 27.60 kWh/m3 and it perceived 2 times lower than 2D process; accordingly, the electricity budget is €5.38 and €2.81 for electrooxidation and 3D electrode process, respectively. The obtained results suggest that under the electric field, polarized AC worked as both adsorbent and a catalyst in the 3D electrochemical system, enhancing subsequently the decomposition of electro-generated H2O2 to more hydroxyl radicals (·OH) and promote the capacity of OTC mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.