Abstract

In this paper, a novel Ti-base β-PbO2 electrode was successfully prepared by using electrodeposition. The prepared electrode was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and anode polarization curves. The electrocatalytic degradation efficiency of bisphenol A by using the novel Ti-base β-PbO2 as anode were examined as a function of supporting electrolyte types and concentrations, electrolysis time, initial BPA concentration, initial pH and current efficiency. The results showed that the removal efficiency of CODCr could reach up to 90.6% after 1.5-h electrolysis at initial bisphenol A concentration of 20 mg L−1, applied voltage of 20 V, electrode spacing of 7 cm, initial pH of 5, and NaCl concentration of 0.020 mol L−1. The electrocatalytic degradation of bisphenol A was induced by hydroxyl radical and other oxidative species attacking parent molecules. The degradation products mainly consisted of small straight chain compounds, CO2 and H2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.