Abstract
Electrocatalytic coupled biofilter (EBF) technology organically integrates the characteristics of electrochemistry and microbial redox, providing ideas for effectively improving biological treatment performance. In this study, an EBF system was developed for enhanced degradation of cyclohexanone in contaminated water. Experimental results show that the system can effectively remove cyclohexanone in contaminated water. Under the optimal parameters, the removal rates of cyclohexanone, TP, NH4+-N and TN were 97.61 ± 1.31%, 76.31 ± 1.67%, 94.14 ± 2.13% and 95.87 ± 1.01% respectively. Degradation kinetics studies found that electrolysis, adsorption, and biodegradation pathways play a major role in the degradation of cyclohexanone. Microbial community analysis indicates that voltage can affect the structure of the microbial community, with the dominant genera shifting from Acidovorax (0 V) to Brevundimonas (0.7 V). Additionally, Acidovorax, Cupriavidus, Ralstonia, and Hydrogenophaga have high abundance in the biofilm and can effectively metabolize cyclohexanone and its intermediates, facilitating the removal of cyclohexanone. In summary, this research can guide the development and construction of highly stable EBF systems and is expected to be used for advanced treatment of industrial wastewater containing cyclohexanone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.