Abstract

A 20–40 nm anatase–titania film on a titanium electrode was fabricated using chemical vapor deposition (CVD). The film was characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and atomic force microscopy (AFM). The CVD deposition time and number of deposition coatings were evaluated to establish the appropriate film fabrication parameters. Results indicate that two coatings at a deposition time of 6 h each produced the best nano-TiO 2 electrode films (NTEFs) with an even distribution of ca. 20 nm diameter nanoparticles in the anatase lattice. The NTEF was tested as an electrocatalytic anode to investigate the degradation efficiency in treating methyl orange dye wastewater. A high removal efficiency of methyl orange dye and total organic carbon (TOC) of 97 and 56%, respectively; was achieved using a current density of 20 mA cm − 2 for 160 min. Cyclic voltammetry showed that the electrochemical degradation reaction rate at the NTEF surface was predominately driven by molecular diffusion. The electrocatalytic decomposition rate of organic pollutants at the NTEF is controlled by mass transport, which was associated with the nanostructure of the electrocatalytic electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.