Abstract

Bioenergy based devices are rapidly gaining significant research interest because of growing quest for future alternative energy resources, but most of the existing technologies suffer from poor electron transfer and slow mass transport, which hinder the fabrication of realistic high-power devices. Using a versatile strategy, here we have demonstrated the fabrication of nanoparticle-polymer framework based bioelectrocatalytic interfaces which facilitate a high mass-transport and thus offers the simple construction of advanced enzyme-based biofuel cells. It has been shown that a gold nanoparticle-structured polyaniline network can be effectively used as an electrical cabling interface providing efficient electron transfer for bio- anode and cathode. The resulting bioelectrodes are capable of excellent diffusional mass-transport and thus can easily facilitate the design of new and highly efficient membrane-less advanced bioenergy devices. The biofuel cell delivers a high-power density of about 2.5 times (i.e., 685µWcm−2) and open circuit voltage of 760mV compared to conventional conducting polymer-based biofuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call