Abstract

In pursuit of sustainable hydrogen production, alkaline water electrolysis offers fossil-free technology for generating hydrogen. Exploring new non-precious metal electrocatalysts plays a crucial role in this endeavor. Herein, we investigate a trimetallic NiFeMo material on a nickel foam support, serving as a bifunctional electrocatalyst for catalyzing both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Scanning electron microscopy reveals a nanosheet array structure with a uniform distribution of Ni, Fe, and Mo compounds on the electrode surface. Furthermore, the chemical surface composition of the pristine and spent electrodes is elucidated via x-ray photoelectron spectroscopy, displaying primarily oxidized species on the electrocatalyst surface. Bifunctional performance is assessed in a three-electrode setup, unveiling overpotentials of 70 mV for the HER and 140 mV for the OER, in a 30 wt% KOH electrolyte at 90 °C. Additionally, in an industrial electrolysis cell, the activated electrode is evaluated as cathode and anode for 28 days, which decreased the overpotential of 330–350 mV at 200 mA cmgeo−2 compared with pristine nickel foam. The performance increase of the electroplated coating is attributed to the increased surface area and enhanced intrinsic activity. The electrolysis cell experiences a ∼6 % voltage loss during the experiment, indicating its robustness and suitability for industrial alkaline electrolysis applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.