Abstract

Due to its simple, scalable, and facile qualities, the chemical reduction of graphene oxide seems to be the most popular approach to prepare graphene. We show that such prepared graphene is strongly adhered with carbonaceous debris that has been produced during the synthesis of graphene oxide by the chemical exfoliation of graphite and still remain on graphene sheets through the chemical reduction steps. Interestingly, the presence of the carbonaceous debris causes a significant impact on the electrochemical behavior of the chemical reduced graphene. Herein, we demonstrate that the electrocatalytical activities of the graphene are greatly boosted by the adhered carbonaceous debris. After the removal of the carbonaceous debris, the electrocatalysis of graphene is not superior to conventional graphite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call