Abstract

A series of binuclear FeIFeI complexes, (μ-SEt)2[Fe(CO)2L]2 (L = CO (1), PMe3 (1-P)), (μ-SRS)[Fe(CO)2L]2 (R = CH2CH2 (μ-edt): L = CO (2), PMe3 (2-P); R = CH2CH2CH2(μ-pdt): L = CO (3), PMe3 (3-P); and R = o-CH2C6H4CH2 (μ-o-xyldt): L = CO (4), PMe3 (4-P)), that serve as structural models for the active site of Fe-hydrogenase are shown to be electrocatalysts for H2 production in the presence of acetic acid in acetonitrile. The redox levels for H2 production were established by spectroelectrochemistry to be Fe0Fe0 for the all-CO complexes and FeIFe0 for the PMe3-substituted derivatives. As electrocatalysts, the PMe3 derivatives are more stable and more sensitive to acid concentration than the all-CO complexes. The electrocatalysis is initiated by electrochemical reduction of these diiron complexes, which subsequently, under weak acid conditions, undergo protonation of the reduced iron center to produce H2. An (η2-H2)FeII–Fe0/I intermediate is suggested and probable electrochemical mechanisms are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.