Abstract

A ratiometric electrochemical biosensor was constructed to detect telomerase activity based on electrocatalysis of cerium-based metal-organic frameworks (CeMOFs) and conformation switch of hairpin DNA. First, the CeMOFs were synthesized using Ce as nodes and 1,3,5-benzenetricarboxylic acid as linker in a green method, and then functionalized with gold nanoparticles. The resulted Au@CeMOF tags demonstrated an excellent electrocatalysis toward hydroquinone oxidation. Meanwhile, a methylene blue (MB) modified hairpin probe was designed with telomerase primer (TP) hybridized “stem” and immobilized on the electrode surface via Au–S chemistry. In the presence of the dNTPs and telomerase, the extended TP can open the hairpin DNA and keep the MB away from the electrode surface, resulting in a decrease of electrochemical signal. In the meantime, the TP-extended part could capture the Au@CeMOF-cDNA tags on the electrode surface via hybridization, leading to the increase electrochemical signal of hydroquinone oxidation catalyzed by Au@CeMOF-cDNA tags. Thus, a ratiometric signal output mode was developed for the electrochemical detection of telomerase activity. This biosensor showed wide dynamic correlation of telomerase activity from 2 × 102 to 2 × 106 cells mL−1 with the limit of detection of 27 cells mL−1, and was applied to evaluate telomerase activity in single cell. The ratiometric electrochemical strategy based on the catalysis of MOFs provides a new avenue on signal transduction in telomerase detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call