Abstract

Aluminum-sulfur (Al-S) batteries of ultrahigh energy-to-price ratios are a promising energy storage technology, while they suffer from a large voltage gap and short lifespan. Herein, we propose an electrocatalyst-boosting quasi-solid-state Al-S battery, which involves a sulfur-anchored cobalt/nitrogen co-doped graphene (S@CoNG) positive electrode and an ionic-liquid-impregnated metal-organic framework (IL@MOF) electrolyte. The Co-N4 sites in CoNG continuously catalyze the breaking of Al-Cl and S-S bonds and accelerate the sulfur conversion, endowing the Al-S battery with a shortened voltage gap of 0.43 V and a high discharge voltage plateau of 0.9 V. In the quasi-solid-state IL@MOF electrolytes, the shuttle effect of polysulfides has been inhibited, which stabilizes the reversible sulfur reaction, enabling the Al-S battery to deliver 820 mAh g-1 specific capacity and 78 % capacity retention after 300 cycles. This finding offers novel insights to design Al-S batteries for stable energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.