Abstract

Cardiac resynchronization therapy (CRT) is a cornerstone of therapy for patients with heart failure, reduced left ventricular (LV) ejection fraction, and a wide QRS complex. However, not all patients respond to CRT: 30% of CRT implanted patients are currently considered clinical non-responders and up to 40% do not achieve LV reverse remodelling. In order to achieve the best CRT response, appropriate patient selection, device implantation, and programming are important factors. Optimization of CRT pacing intervals may improve results, increasing the number of responders, and the magnitude of the response. Echocardiography is considered the reference method for atrioventricular and interventricular (VV) intervals optimization but it is time-consuming, complex and it has a large interobserver and intraobserver variability. Previous studies have linked QRS shortening to clinical response, echocardiographic improvement and favourable prognosis. In this review, we describe the electrocardiographic optimization methods available: 12-lead electrocardiogram; fusion-optimized intervals (FOI); intracardiac electrogram-based algorithms; and electrocardiographic imaging. Fusion-optimized intervals is an electrocardiographic method of optimizing CRT based on QRS duration that combines fusion with intrinsic conduction. The FOI method is feasible and fast, further reduces QRS duration, can be performed during implant, improves acute haemodynamic response, and achieves greater LV remodelling compared with nominal programming of CRT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.