Abstract

The present work aims at investigating the impact of wheat straw fibres (WSF) size, morphology and content on the process-ability and functional properties (mechanical properties and water vapour permeability) of PHBV-based composites. For that purpose, three types of fibres obtained by successive grindings (from the micrometric up to the millimetric scale) were used. It was shown that the highest possible filler level was all the more high when decreasing fibre size (over 50 wt% in the case of micrometric fibres), due to reduced film heterogeneity and improved fibre wetting by the polymer. As regards functional properties, increasing fibre size and/or content led to a significant degradation of ultimate tensile properties, while Young’s modulus was not significantly affected. At the same time, water vapour transmission rate was significantly increased from 11 up to 110 g m−2 day−1, which could extend the applicability of PHBV/WSF composites as food packaging materials to respiring fresh products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.