Abstract

Deep brain stimulation (DBS) is increasingly used to treat a variety of neurological conditions (e.g. movement disorders and chronic pain). This prospective study was designed to detect electrocardiogram (ECG) artifacts induced by deep brain stimulation and to investigate which factors (patient disease, electrode position within the brain or type of stimulation) produced these artifacts. Twelve patients (four women, eight men) with deep brain stimulators were enrolled in the study. Patients were selected to represent the common indications for DBS (Parkinson's disease, tremor, dystonia), the common electrode locations (pallidum, thalamus, subthalamic nucleus) and the two types of stimulation (monopolar, bipolar). Patients had one ECG with the DBS turned 'on' and another with the DBS turned 'off'. The ECGs were then randomized and read by a cardiologist blinded to the status of the patient and DBS and artifacts were noted to be either present or absent. The six patients using monopolar stimulation all had artifacts on their electrocardiograms. These artifacts were severe enough to interfere with ECG interpretation. There were no artifacts detected in the six patients using bipolar stimulation. Electrode location and patient disease appeared to have no effect on ECG artifact. Deep brain stimulation can cause ECG artifacts when monopolar settings are used. These artifacts are not present with bipolar settings or when the DBS is turned 'off'. Knowledge of these potential ECG artifacts and how to avoid them is essential to facilitate accurate ECG interpretation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call