Abstract

Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free $\mathrm{Ba}({\mathrm{Zr}}_{0.5}{\mathrm{Ti}}_{0.5}){\mathrm{O}}_{3}$ (BZT) relaxor ferroelectric. We find that the EC coefficient varies nonmonotonically with the field at any temperature, presenting a maximum that can be traced back to the behavior of BZT's polar nanoregions. We also introduce a simple Landau-based model that reproduces the EC behavior of BZT as a function of field and temperature, and which is directly applicable to other compounds. Finally, we confirm that, for low temperatures (i.e., in nonergodic conditions), the usual indirect approach to measure the EC response provides an estimate that differs quantitatively from a direct evaluation of the field-induced temperature change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.