Abstract

Amplicons corresponding to the GC-rich p53 exon 5 and its analogues, synthesized by substituting 60% of cytosine by 5-methyl-cytosine, or 60% of guanosine by inosine and GC-poor p53 exon 6 were synthesized and investigated electrochemically, in the presence and absence of proflavine, by differential pulse voltammetry (DPV). Incorporation of base analogues and the thermal stability of the resulting amplicons were tested in the presence of a fluorescent probe (Sybr-Green). Peak current at 1.0 V was lower for methylated than for unmethylated PCR amplicons and was similarly affected by proflavine intercalation. In contrast, considerable peak current differences were observed in the presence of proflavine for unmodified exon 5 v.s. exon 6 or inosine-containing amplicons. Thermal analysis verified the expected shifts in melting temperature (T (m)) due to the base analogue incorporation and GC-content variations. In conclusion, methylated and unmethylated PCR amplicons could be distinguished in model DNA systems using differential pulse voltammetry (DPV) and use of proflavine could serve as an electrochemical probe for identifying different DNA conformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.