Abstract

An electrochemical study for detecting green leaf plant volatiles from healthy and infected plants has been devised and tested. The electrocatalytic response of plant volatiles at a gold electrode was measured using cyclic voltammetry, amperometric current-time (i-t) analysis, differential pulse voltammetry (DPV) and hydrodynamic experiments. The sensitivity of the gold electrode in i-t analysis was 0.13 mA mM(-1) cm(-2) for cis-3-hexenol, 0.11 mA mM(-1) cm(-2) for cis-hexenyl acetate and 0.02 mA mM(-1) cm(-2) for hexyl acetate. The limits of detection of cis-3-hexenol, cis-hexenyl acetate and hexyl acetate by i-t analysis were 0.5, 0.3 and 0.6 μM, respectively, at a signal to noise ratio of 3. The hydrodynamic studies yielded the electro-kinetic parameters such as diffusivities of plant volatiles in solution and the rate constants for their electrochemical reactions. The DPV and interference studies reveal that the gold electrode possessed high sensitivity for plant volatiles determination in synthetic samples, which imitates both healthy and infected plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call