Abstract

Genetic analysis of infectious and genetic diseases and cancer diagnostics require the development of efficient tools for fast and reliable analysis of single-nucleotide polymorphism (SNP) in targeted DNA and RNA sequences often responsible for signalling disease onset. Here, we highlight the main trends in the development of electrochemical genosensors for sensitive and selective detection of SNP that are based on hairpin DNA architectures exhibiting better SNP recognition properties compared with linear DNA probes. SNP detection by electrochemical hairpin DNA beacons is discussed, and comparative analysis of the existing SNP sensing strategies based on enzymatic and nanoparticle signal amplification schemes is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.