Abstract

Electroaddressing is an attractive method for triggering assembly of stimuli-responsive biopolymers with exquisite spatiotemporal control, and it also offers a controllable means to concurrently assemble biological materials and nanoparticles for a diverse range of applications. Here, we demonstrate a novel method to construct fluorescent and patterned device surfaces by electroaddressing of quantum dots (QDs)/chitosan composite. First, the surfaces of ZnS QDs/chitosan composite on the electrodes are built by electrodeposition method. It is shown that the deposited surface displays clear fluorescence under UV light, and the fluorescence intensity of the surface can be controlled by electrodeposition conditions (e.g., deposition time). Furthermore, a variety of fluorescent patterns can be constructed by employing electrodes or substrates with various shapes. Specifically, taking advantage of the spatiotemporal selectivity of electroaddressing and the pH-responsive property of chitosan, we construct diverse fluorescent patterns by electroaddressing QDs/chitosan composite at the localized region. It is also found that the fluorescent patterns of QDs/chitosan composite have reproducibility. Thus, this work presents a convenient, versatile, and controllable method to construct fluorescent and patterned device surface by electroaddressing, which has promising applications in photoluminescence device, fluorescent and patterned coating, and nanocomposite biodevice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call