Abstract
AbstractBacteria often reside at surfaces as complex biofilms in which an exopolysaccharide matrix entraps the population while allowing access to its chemical environment. There is a growing awareness that the biofilm structure and activity are integral to a wide array of properties important to health (the microbiome), disease (drug resistance) and technology (fouling). Despite the importance of bacterial biofilms, few experimental platforms and systems are available to assemble complex populations and monitor their activities. Here, a functionalized alginate composite material for creating in vitro model biofilms suitable for cell‐cell signaling studies by entrapping bacterial cells in situ is reported. Biofilm assembly is achieved using device‐imposed electrical signals to electrodeposit the stimuli‐responsive polysaccharide alginate. This electrodeposition mechanism is versatile in that it allows control of the bacterial population density and distribution. For instance, it is demonstrated that a mixed population can be homogeneously distributed throughout the biofilm or can be assembled as spatially segregated populations within a stratified biofilm. The “electroaddressable” biofilms are visualized using both a planar 2D chip with patterned electrodes and a microfluidic bioMEMS device with sidewall electrodes. Specifically, it is observed that bacteria entrapped within the model biofilm recognize and respond to chemical stimuli imposed from the fluidic environment. Finally, reporter cells are used to demonstrate that bacteria entrapped within this model biofilm engage in intercellular quorum sensing. This work demonstrates the functionality of the stimuli‐responsive polysaccharide by biofabricating pseudo‐3D cell‐gel biocomposites, mimicking the formation of biofilms, for interrogating phenotypes of E. coli bacterial populations. In addition to controlling assembly, the microfluidic device allows the biofilm to be monitored through the fluorescence methods commonly used in biological research. This platform technology should be able to be exploited for monitoring biofilm development, as well as for extending the understanding of the interactions between various bacterial species arranged in controlled patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.