Abstract

BackgroundA few studies have reported that electroacupuncture (EA) can repair the intestinal barrier through unknown mechanisms. Cannabinoid receptor 1 (CB1) was shown to play an important role in the protection of the gut barrier in recent studies. Gut microbiota can influence the expression of CB1. In this study, we explored the effect of EA on the gut barrier in acute colitis and its mechanism.MethodsA dextran sulfate sodium (DSS)-induced acute colitis model, CB1 antagonist model and fecal microbiota transplantation (FMT) model were used in this study. The disease activity index (DAI) score, colon length, histological score, and inflammatory factors were detected to evaluate colonic inflammation. Methods for detecting intestinal barrier functions included the expression of tight junction proteins, intestinal permeability, and the number of goblet cells. Moreover, 16S rRNA sequencing was applied to analyze alterations in the gut microbiota. Western blotting and RT-PCR were performed to assess the levels of CB1 and autophagy-related proteins. Autophagosomes were observed by transmission electron microscopy.ResultsEA reduced the DAI score, histological score, levels of inflammatory factors, and restored the colon length. Moreover, EA increased the expression of tight junction proteins and the number of goblet cells, and decreased intestinal permeability. In addition, EA remodeled the community structure of the gut microbiota, increased the expression of CB1, and enhanced the degree of autophagy. However, the therapeutic effects were reversed by CB1 antagonists. In addition, FMT in the EA group exhibited similar effects to EA and upregulated CB1.ConclusionsWe concluded that EA may protect intestinal barrier functions by increasing the expression of CB1 to enhance autophagy through gut microbiota in DSS-induced acute colitis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.