Abstract

MircoRNAs (miRs) have been implicated in learning and memory, by regulating LIM domain kinase (LIMK1) to induce synaptic-dendritic plasticity. The study aimed to investigate whether miRNAs/LIMK1 signaling was involved in electroacupuncture- (EA-) mediated synaptic-dendritic plasticity in a rat model of middle cerebral artery occlusion induced cognitive deficit (MICD). Compared to untreatment or non-acupoint-EA treatment, EA at DU20 and DU24 acupoints could shorten escape latency and increase the frequency of crossing platform in Morris water maze test. T2-weighted imaging showed that the MICD rat brain lesions were located in cortex, hippocampus, corpus striatum, and thalamus regions and injured volumes were reduced after EA. Furthermore, we found that the density of dendritic spine and the number of synapses in the hippocampal CA1 pyramidal cells were obviously reduced at Day 14 after MICD. However, synaptic-dendritic loss could be rescued after EA. Moreover, the synaptic-dendritic plasticity was associated with increases of the total LIMK1 and phospho-LIMK1 levels in hippocampal CA1 region, wherein EA decreased the expression of miR-134, negatively regulating LIMK1 to enhance synaptic-dendritic plasticity. Therefore, miR-134-mediated LIMK1 was involved in EA-induced hippocampal synaptic plasticity, which served as a contributor to improving learning and memory during the recovery stage of ischemic stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.