Abstract

Electroacupuncture pretreatment is considered as an optimal strategy for inducing cerebral ischaemic tolerance. However, the underlying neuroprotective mechanism of this approach has never been explored from the perspective of calcium homeostasis. Intracellular calcium overload is a key inducer of cascade neuronal injury in the early stage after cerebral ischaemia attack and the Na+/Ca2+ exchanger (NCX) is the main plasma membrane calcium extrusion pathway maintaining post-ischaemic calcium homeostasis. This study aims to investigate whether the regulation of NCX-mediated calcium transport contributes to the cerebroprotective effect of electroacupuncture pretreatment against ischaemic injury and to elucidate the underlying mechanisms involved in this process. Following five days of repeated electroacupuncture stimulation on Baihui (GV20), Neiguan (PC6), and Sanyinjiao (SP6) acupoints in rats, in vivo and in vitro models of cerebral ischaemia were induced through middle cerebral artery occlusion and oxygen/glucose deprivation (OGD), respectively. Firstly, we verified the neuroprotective effect of electroacupuncture pretreatment from the perspective of neurological score, infarct volume and neuronal apoptosis. Our findings from brain slice patch-clamp indicated that electroacupuncture pretreatment enhanced the Ca2+ efflux capacity of NCX after OGD. NCX1 expression in the ischaemic penumbra exhibited a consistent decline from 1 to 24 h in MCAO rats. Electroacupuncture pretreatment upregulated the expression of NCX1, especially at 24 h, and silencing NCX1 by short hairpin RNA (shRNA) administration reversed the protective effect of electroacupuncture pretreatment against cerebral ischaemic injury. Furthermore, we administered LY294002, a phosphatidylinositol 3 kinase (PI3K) inhibitor, prior to inducing ischaemia to investigate the upstream regulatory mechanism of electroacupuncture pretreatment on NCX1 expression. Electroacupuncture pretreatment activates PI3K/Akt pathway, leading to an increase in the expression of NCX1, which facilitates calcium extrusion and exerts a neuroprotective effect against cerebral ischaemia. These findings provided a novel insight into the prevention of ischemic stroke and other similar conditions characterized by brain ischaemia or hypoperfusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.