Abstract

ContextAutonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture but the mechanisms are largely unknown.ObjectiveTo identify the molecular mechanisms underlying electroacupuncture-induced glucose uptake in skeletal muscle in insulin-resistant overweight/obese women with and without polycystic ovary syndrome (PCOS).Design/ParticipantsIn a case-control study, skeletal muscle biopsies were collected from 15 women with PCOS and 14 controls before and after electroacupuncture. Gene expression and methylation was analyzed using Illumina BeadChips arrays.ResultsA single bout of electroacupuncture restores metabolic and transcriptional alterations and induces epigenetic changes in skeletal muscle. Transcriptomic analysis revealed 180 unique genes (q < 0.05) whose expression was changed by electroacupuncture, with 95% of the changes towards a healthier phenotype. We identified DNA methylation changes at 304 unique sites (q < 0.20), and these changes correlated with altered expression of 101 genes (P < 0.05). Among the 50 most upregulated genes in response to electroacupuncture, 38% were also upregulated in response to exercise. We identified a subset of genes that were selectively altered by electroacupuncture in women with PCOS. For example, MSX1 and SRNX1 were decreased in muscle tissue of women with PCOS and were increased by electroacupuncture and exercise. siRNA-mediated silencing of these 2 genes in cultured myotubes decreased glycogen synthesis, supporting a role for these genes in glucose homeostasis.ConclusionOur findings provide evidence that electroacupuncture normalizes gene expression in skeletal muscle in a manner similar to acute exercise. Electroacupuncture might therefore be a useful way of assisting those who have difficulties performing exercise.

Highlights

  • A single bout of electroacupuncture restores metabolic and transcriptional alterations and induces epigenetic changes in skeletal muscle

  • Our findings provide evidence that electroacupuncture normalizes gene expression in skeletal muscle in a manner similar to acute exercise

  • Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder that affects 5% to 17% of women of reproductive age worldwide, and it is associated with decreased fertility and hyperandrogenism [1, 2]

Read more

Summary

Introduction

A single bout of electroacupuncture restores metabolic and transcriptional alterations and induces epigenetic changes in skeletal muscle. Transcriptomic analysis revealed 180 unique genes (q < 0.05) whose expression was changed by electroacupuncture, with 95% of the changes towards a healthier phenotype. We identified DNA methylation changes at 304 unique sites (q < 0.20), and these changes correlated with altered expression of 101 genes (P < 0.05). Among the 50 most upregulated genes in response to electroacupuncture, 38% were upregulated in response to exercise. We identified a subset of genes that were selectively altered by electroacupuncture in women with PCOS. MSX1 and SRNX1 were decreased in muscle tissue of women with PCOS and were increased by electroacupuncture and exercise. SiRNA-mediated silencing of these 2 genes in cultured myotubes decreased glycogen synthesis, supporting a role for these genes in glucose homeostasis MSX1 and SRNX1 were decreased in muscle tissue of women with PCOS and were increased by electroacupuncture and exercise. siRNA-mediated silencing of these 2 genes in cultured myotubes decreased glycogen synthesis, supporting a role for these genes in glucose homeostasis

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.