Abstract
The descending motor nerve conduction of voluntary swallowing is mainly launched by primary motor cortex (M1). M1 can activate and regulate peripheral nerves (hypoglossal) to control the swallowing. Acupuncture at “Lianquan” acupoint (CV23) has a positive effect against poststroke dysphagia (PSD). In previous work, we have demonstrated that electroacupuncture (EA) could regulate swallowing-related motor neurons and promote swallowing activity in the essential part of central pattern generator (CPG), containing nucleus ambiguus (NA), nucleus of the solitary tract (NTS), and ventrolateral medulla (VLM) under the physiological condition. In the present work, we have investigated the effects of EA on the PSD mice in vivo and sought evidence for PSD improvement by electrophysiology recording and laser speckle contrast imaging (LSCI). Four main conclusions can be drawn from our study: (i) EA may enhance the local field potential in noninfarction area of M1, activate the swallowing-related neurons (pyramidal cells), and increase the motor conduction of noninfarction area in voluntary swallowing; (ii) EA may improve the blood flow in both M1 on the healthy side and deglutition muscles and relieve PSD symptoms; (iii) EA could increase the motor conduction velocity (MCV) in hypoglossal nerve, enhance the EMG of mylohyoid muscle, alleviate the paralysis of swallowing muscles, release the substance P, and restore the ability to drink water; and (iv) EA can boost the functional compensation of M1 in the noninfarction side, strengthen the excitatory of hypoglossal nerve, and be involved in the voluntary swallowing neural control to improve PSD. This research provides a timely and necessary experimental evidence of the motor neural regulation in dysphagia after stroke by acupuncture in clinic.
Highlights
We have demonstrated that electroacupuncture (EA) could regulate swallowing-related motor neurons and promote swallowing activity in the essential part of central pattern generator (CPG), containing nucleus ambiguus (NA), nucleus of the solitary tract (NTS), and ventrolateral medulla (VLM) under the physiological condition ([25]; You H et al, 2018; [26])
M1, thalamus, and insula are activated after transcutaneous electrical stimulation in pharyngeal muscle; in addition, cortical recombination mediated by electrical stimulation improves swallowing function, which is closely correlated to the occurrence and parameters of electrical stimulation [27,28,29]
By observing the brain and the lower jaw with laser speckle contrast imaging (LSCI), we found the right of M1 showed an obvious focal ischemia, and the blood perfusion of lower jaw was lower in the model (Figure 1(b))
Summary
[5, 7,8,9]. Dysphagia can result in significant complications, such as malnutrition, aspiration pneumonia, and poor quality of life [10,11,12]. Further research is required to understand how the motor cortex conducts through the descending motor nerves, affects swallowing function, and how blood flow changes in the brain and deglutition-muscle groups after dysphagia occurring. The life quality of the patients suffering from poststroke dysphagia (PSD) can be affected severely if the PSD is caused by cortical ischemic injury, but various early rehabilitation programs can improve this situation [20]. We aimed to observe the descending motor nerve regulation mechanism and blood flow changes involved in voluntary swallowing, so we could further illuminate how EA intervene the motor neural control of voluntary swallowing to improve PSD in mice
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.