Abstract

Background Effective therapies for Alzheimer's disease (AD) are still being explored. Electroacupuncture with traditional Chinese medicine theory may improve spatial learning and memory abilities and glucose metabolism rates in an animal model of AD. However, the mechanism of electroacupuncture in intervention of AD is still unclear. According to recent studies of AD mechanisms, the NLRP3 inflammasome regulated the expression of IL-1β in the brain which may mediate AD related processes. Therefore, in our study, we intend to explore the possible relation between electroacupuncture and the expression of NLRP 3 inflammasome in the hippocampus of an AD animal model. Method In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an AD animal model, which were randomly divided into two groups: Alzheimer's disease model group (AD group) and electroacupuncture group (EA group). In the control paradigm, 7.5-month-old male SAMR1 mice were used as the normal control group (N group). DU20, DU26, and EX-HN3 were selected as the acupuncture points, and after a 15-day treatment of electroacupuncture, we used immunohistochemistry and Western blotting to examine the expression of IL-1β and NLRP3, ASC, and Caspase-1 in the hippocampus of the AD animal model. Results Compared with N group, IL-1β, NLRP3, ASC, and Caspase-1 positive cells in AD group were increased, and the relative expression of all above proteins significantly increased (P < 0.01). Compared with AD group, the expression of IL-1β, NLRP3, ASC, and Caspase-1 in EA group was significantly decreased (P < 0.01). Conclusion Electroacupuncture treatment could inhibit the inflammation reaction in the hippocampus of SAMP8 mice. What is more, the possible mechanism of electroacupuncture reduced the expression of IL-1β and NLRP3 inflammasome relative protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.