Abstract

It is to explore, based on stromal cell derived factor 1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) signal axis, whether the electroacupuncture (EA) combined with bone marrow mesenchymal stem cells (BMSCs) transplantation can promote thin endometrium regeneration and improve endometrial receptivity, so as to further study its mechanisms underlying improvement of promoting BMSCs homing to repair thin endometrium. Thirty matured female SD rats were randomly divided into normal control , model , BMSCs transplantation (BMSCs), BMSCs+AMD3100 (a specific antagonist of CXCR4, BMSCs+AMD3100), BMSCs+EA, and BMSCs+EA+AMD3100 groups, with 5 rats in each group. The thin endometrial model was established by intrauterine injection of 95% ethanol during the period of estrus. Rats of the model group received intravenous injection of PBS solution (tail vein) on day 1, 3 and 7 of modeling and intraperitoneal injection of normal saline once daily for 3 estrous cycles. Rats of the BMSCs group received intravenous injection of BMSCs suspension on day 1,3 and 7 of modeling, and those of the BMSCs+EA group received BMSCs transplantation and EA stimulation. EA (2 Hz/15 Hz, 1 mA) was applied to "Guanyuan" (CV4) and bilateral "Sanyinjiao"(SP9), "Zigong" (EX-CA1) for 15 min, once daily for 3 estrous cycles. Rats of the BMSCs+AMD3100 group received intravenous injection of BMSCs suspension (1×106/mL) and intraperitoneal injection of AMD3100 (5 mg/kg), and those of the BMSCs+EA+AMD3100 group received administration of BMSCs, AMD3100 and EA, with both groups being once daily for 3 estrous cycles. H.E. staining was used to observe histopathological changes of endometrium tissues, and immunohistochemistry was used to detect the expressions of cytokeratin (CK19) and vimentin in endometrium (for evaluating the damage and repair of endometrium). The expression levels of homeobox A10 (HOXA10), leukemia inhibitory factor (LIF), SDF-1 and CXCR4 proteins were detected by Western blot, and those of SDF-1 and CXCR4 mRNAs in the endometrium detected by real-time PCR. In comparison with the normal control group, the number of endometrial glands, the immunoactivity of CK19 and vimentin, the expression leve-ls of HOXA10, LIF and CXCR4 proteins and CXCR4 mRNA were significantly down-regulated (P<0.01), and the expression levels of SDF-1 protein and mRNA significantly up-regulated (P<0.05) in the model group. Compared with the model group, the number of endometrial glands, the immunoactivity of CK19 and vimentin, and the expression levels of HOXA10, LIF, CXCR4 proteins and CXCR4 mRNA in the BMSCs group, and the number of endometrial glands, the immunoactivity of CK19 and vimentin, the expression levels of HOXA10, LIF, CXCR4 proteins and CXCR4 mRNA, and SDF-1 protein and mRNA in the BMSCs+EA group were significantly up-regulated (P<0.05, P<0.01). Compared to the BMSCs group, the number of endometrial glands, and the expression levels of LIF, CXCR4 proteins and CXCR4 mRNA in the BMSCs+EA group were up-regulated (P<0.01, P<0.05); the number of endometrial glands, the immunoactivity of CK19 and vimentin, the expression levels of HOXA10, LIF, CXCR4 proteins and CXCR4 mRNA in the BMSCs+AMD3100 group were down-regulated (P<0.01). Compared to the BMSCs+EA group, the number of endometrial glands, the immunoactivity of CK19 and vimentin, the expression levels of HOXA10, LIF, CXCR4 proteins and CXCR4 mRNA in the BMSCs+EA+AMD3100 group were down-regulated (P<0.01). Results of H.E. staining showed thin endometrium with absence of epithelial cells, and sparse glands and blood vessels, with smaller glandular cavity in the model group, which was relative milder in BMSCs and BMSCs+EA groups. EA can promote the transfer of transplanted BMSCs to the damaged site through SDF-1/CXCR4 signaling related stem cell homing, thereby promoting thin endometrial regeneration, repairing endometrial injury, and improving endometrial tolerance in rats with thin endometrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.