Abstract
Sequential dual-cured epoxy composites, based on off-stoichiometric thiol–epoxy mixtures catalysed by 1-methylimidazole, have been developed by adding carbon nanotubes (CNT). The epoxy curing process initially consists in two thermally activated curing stages: a first thiol–epoxy reaction and later homopolymerization at a higher temperature. This system presents easy shaping/conforming and shape memory properties through thermo-mechanical treatments. Addition of the electrical CNT network into the epoxy matrix allows electrical switching, which increases its performance and in-situ applicability.The obtained results confirmed that CNTs catalyse the homopolymerization epoxy reaction, hindering the sequential curing process, due to the π–π anchoring of imidazole catalyser over the CNTs surface, enhanced by donor–acceptor interaction.Non-doped off-stoichiometric resins present relatively high thermal strength, with a glass transition temperature in the range of 73–109 °C, and high stiffness, with a storage modulus close to 2–3 GPa. They can be easily conformed at low temperature, 60 °C, before their second curing stage, showing a high shaping efficiency (around 90%) and full fixing efficiency (>98%).Nanocomposites with 0.2% CNT present efficient Joule heating, triggering the shape memory at low voltage, <80 V, with fixing and recovery efficiencies of 60–85%. In addition to its high in-situ applicability, the electrical resistive heating is faster and more efficient than conventional heating in an oven.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Materials Research and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.