Abstract
The interfacial electrochemistry of self-assembled monolayers (SAMs) of ferrocenyldodecanethiolate on gold (FcC12SAu) electrodes is applied to detect the micellization of some common anionic surfactants, sodium n-alkyl sulfates, sodium n-alkyl sulfonates, sodium diamyl sulfosuccinate, and sodium dodecanoate, in aqueous solution by cyclic voltammetry. The apparent formal redox potential (E°'SAM) of the FcC12SAu SAM is used to track changes in the concentration of the unaggregated surfactant anions and determine the critical micelle concentration (cmc). The effect of added salt (NaF) on the sodium alkyl sulfate concentration dependence of E°'SAM is also investigated. Weakly hydrated anions, such as ClO4-, pair with the electrogenerated SAM-bound ferroceniums to neutralize the excess positive charge created at the SAM/electrolyte solution interface and stabilize the oxidized cations. E°'SAM exhibits a Nernstian-type dependence on the anion activity in solution. Aggregation of the surfactant anions into micelles above the cmc causes the free surfactant anion activity to deviate from the molar concentration of added surfactant, resulting in a break in the plot of E°'SAM versus the logarithm of the concentration of anionic surfactant. The concentration at which this deviation occurs is in good agreement with literature or experimentally determined values of the cmc. The effects of Ohmic potential drop, liquid junction potential, and surfactant adsorption behavior on E°'SAM are addressed. Ultimately, the E°'SAM response as a function of the anionic surfactant concentration exhibits the same features reported using potentiometry and surfactant ion-selective electrodes, which provide a direct measure of the free surfactant anion activity, thus making FcC12SAu SAM electrodes useful for the detection of surfactant aggregation and micelle formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.