Abstract

Soft actuators have received extensive attention in the fields of soft robotics, biomedicine, and intelligence systems owing to their advantages of pliancy, silence, and essential safety. However, most existing soft actuators have only single actuation elements and lack sensing. Therefore, it is difficult for them to perform complex motions with multiple degrees of freedom (multi-DOFs) and high precision. This article reports a miniature columnar dielectric elastomer actuator (DEA) with multi-DOF actuation and sensing, which was fabricated with an electroactive polymer acrylic film (Very High Bond [VHB] acrylic film by 3M Company) and carbon black grease electrodes. The arrangement of the simulation electrodes on the VHB was optimized to realize multi-DOF actuation, and the sensing electrodes were configured on the outer part of the DEA to realize real-time sensing. The results showed that the soft actuator can achieve all-round actuation through the selective power of the stimulation electrodes with a controllable voltage. The maximum bending angle and axial strain of the actuator reached 50° and 13%, respectively. Moreover, the deformation modes, direction, and quantity could be precisely measured using the integrative sensing function. In addition, to demonstrate the advantages of the proposed actuator, a manipulator with multiple actuators was designed and controlled to realize different actions of screwing and grasping with sensing. This research is useful not only for the design of multifunctional soft actuators but also for the development of soft robots with flexible, complex, and precisely controllable motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.