Abstract

Thin nanostructured metal (Au, Ag) films, magnetron-sputtered on semiconductor (n-type Si) substrate under 6 V voltage exposure for 15 min, exhibit high antibacterial effect against the food pathogens S. aureus and P. aeruginosa. Nanostructures were formed by femtosecond laser ablation, resulting in an array of microspots. The observed effect is caused by the emergence of submicron, laterally periodical static electric and magnetic fields, adjacent to the metal film, causing the abrupt voltage drops, which induce the hyperpolarization of the cell membrane and increase its permeability, resulting in the formation of pores (electroporation) in the membrane and the subsequent apoptosis of the bacterial cell. Additional factors, which enhance the antibacterial effect of the studied materials, are the volume convection in the liquid drop with bacterial culture, caused by the moderate heating of the substrate to 45 °C–50 °C during the electric current flow and electro-taxis of bacteria to the charged nanostructured metal film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.