Abstract

In investigations into the design and isolation of semiconducting nano-objects, the synthesis of a new bisureido pi-conjugated organogelator has been achieved. This oligo(phenylenethienylene) derivative was found to be capable of forming one-dimensional supramolecular assemblies, leading to the gelation of several solvents. Its self-assembling properties have been studied with different techniques (AFM, EFM, etc.). Nano-objects have successfully been fabricated from the pristine organogel under appropriate dilution conditions. In particular, nanorods and nanorings composed of the electroactive organogelator have been isolated and characterized. With additional support from an electrochemical study of the organogelator in solution, it has been demonstrated by the EFM technique that such nano-objects were capable of exhibiting charge transport properties, a requirement in the fabrication of nanoscale optoelectronic devices. It was observed that positive charges can be injected and delocalized all along an individual nano-object (nanorod and nanoring) over micrometers and, remarkably, that no charge was stored in the center of the nanoring. It was also observed that topographic constructions in the nanostructures prevent transport and delocalization. The same experiments were performed with a negative bias (i.e., electron injection), but no charge delocalization was observed. These results could be correlated with the nature of 1, which is a good electron-donor, so it can easily be oxidized, but can be reduced only with difficulty.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.